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steric hindrance which have been recognized hereto­
fore.20 
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The Spin Resonance Spectrum and 
Reactivity of the r-Butoxy Radical 

Sir: 

There are several reports in the literature of attempts to 
observe the esr spectrum of the r-butoxy radical (BO-) 
generated by photolysis of di-/-butyl peroxide1-3 

(BOOB) or f-butyl hydroperoxide (BOOH).2-5 Piette 
and Landgraf4 irradiated BOOH and observed a one-line 
spectrum with g = 2.003. However, later work indicated 
that the radical observed was BOO•, rather than BO• 5

2,3 

and no esr signal was detected on irradiation of carefully 
purified BOOB.2 We now find that on irradiation of 
freshly washed and distilled BOOB, using a high-intensity 
source and fairly efficient focusing of the light,6 we observe 
a one-line spectrum with g = 2.004 + 0.004. On the 
other hand, irradiation of 10% BOOH in BOOB produces 
a radical having a one-line spectrum with g = 2.015 + 
0.004. The latter value is in excellent agreement with the 
values of 2.014 ± 0.001 for BOO-3 '7 and 2.0146 ± 0.0001 
for C6H5C(CHa)2OO.8 Irradiation of solid BOOB at 
-70° produced a radical at g = 2.004 + 0.004 and a peak 
to peak width of 12 G. 

followed to 60-70% destruction of the radical. The 
results were plotted according to eq 1. The number of 

*0/.R = 1 + 2(k,R0)t (1) 
points in each plot is listed in column 4. The absolute 
steady-state radical concentration, R0, in run 1 was 
determined by double electronic integration using 
standard pitch as the reference.6 In runs 2-6 the values 

were determined by comparing the derivative peak 
heights with that of run 1. The average value thus 
obtained for k, is 1.3 x 109 M"1 sec - 1 . Several esti­
mates of k, for BO • have been based upon indirect kinetic 
studies. Walling and Kurkov have estimated k, as 
1.4 x 109 M - 1 sec - 1 in carbon tetrachloride solution by 
measuring the per cent cage reaction in the decomposition 
of /-butyl hypochlorite and using eq 2 with iodine atom as 
the standard.9 

^t, BO-
 = ~~ kt,\- (2) 

c = per cent cage reaction 

Ingold and Carlsson have arrived at a value of 2.8 x 108 

M - 1 sec - 1 based on oxidation studies.10 There isalsoa 
report that 10% of the radicals produced in the decomposi­
tion of BOOB in isooctane undergo geminate recombina­
tion. This would lead to a value of k, of 109 M ~x sec _ l 

(k, = AkD,kD as 1010 M - 1 sec -1). By way of contrast, 
the observed termination constant for BOO • at 30° can be 
extrapolated from the data of Maguire and Pink to be 
3.0 x 10 5 M - 1 SeC - 1 . 2 There are several values of kt for 
C6H5C(CH3)200- in the literature.8-1 1>12 The values 
obtained by esr spectroscopy are 2.2 x 1 0 4 M - 1 sec - 1 

and3.7 x 104M -1SeC -^wWIe that obtained from oxida­
tion studies is 0.75 x 104 M - 1 sec - 1 .1 2 The Russell 
mechanism for termination of peroxy radicals outlined 
below shows that the observed rate constant is equal to 
k3k4/(k„.3 + &4).1 2 - 1 4 The vast difference in k, values 

2RO2 • , RO1R (3) 

Table I. Termination Constant for r-Butoxy Radical 

Run 

1 
2 
3 
4 
5 
6 

% destruction 

66 
68 
68 
68 
60 
43 

Termination 
time" x 103 

sec 

2.2 
2.2 
2.2 
2.2 
5.1 
2.2 

No. of 
points 

4 
4 
6 
5 
4 
4 

r" 

0.991 
0.982 
0.986 
0.981 
0.989 
0.982 

Intercept" 

0.94 
0.83 
1.02 
0.78 
0.94 
0.97 

IcR0 x 10"3 

sec -1 

2.02 
1.64 
1.18 
2.50 
3.09 
2.16 

R0 x 106 

M 

1.5+.3 
1.5 
1.0 
2.0 
2.0 
1.6 

k 
M-

x 10"9 

~l sec - 1 

1.4 
1.1 
1.2 
1.3 
1.5 
1.4 

1 Time allowed for decay. * Correlation coefficient for the least squares line. c The intercept should be 1.00. 

Using techniques previously described6 we followed the 
decay of the signal with g = 2.004 at room temperature. 
The results are reported in Table I. The decay was 
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crease in kA due to a change in termination mechanism as 
R goes from a tertiary to a primary group.13'14 

Thus it is clear that k, for BO- is on the order of 109 

M"1 sec-1, while that for BOO- is about 104 M'1 sec"1. 
The value of A:, obtained from direct irradiation of purified 
BOOB is a strong indication that the species at g = 2.004 
is BO •. Ag value for this radical would be predicted to be 
greater than 2.0023 due to the higher spin-orbit coupling 
constant for oxygen than for carbon.16 Similarly the 
g value for BO • should be lower than that of HO • which 
is reported to be 2.01.17 Furthermore the lack of hyper-
fine splitting and the spectral width rule out a radical with 
the unpaired spin on carbon bearing a hydrogen atom.18 

Certainly the species at g = 2.004 is not BOO-. We are 
hard pressed to envision a radical produced on irradiation 
of neat BOOB which is not BO •, BOO •, or a carbon 
radical with a hydrogen atom attached to the carbon 
bearing the unpaired spin. 
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An Unusual Substituent Effect in the 
Photorearrangement of Benzobicyclo[2.2.2]octadienoIs 

norbornadiene4 to tetracyclo [5.4.0.02 '4.03,6 ]undeca-l (7),-
8,10-triene photorearrangements. We have examined the 
photochemistry of the related epimeric anti- and syn-
l,3,3,4,7,8-hexamethyl-5,6-benzobicyclo[2.2.2]octa-5,7-
diene-2-ols (3 and 4, respectively) and have found a most 
unusual substituent effect. 

Irradiation of the anti alcohol 35 with acetone sensitiza­
tion through a Corex filter with a Hanovia L 450-W lamp, 
when allowed to proceed to 85% conversion, provided a 
73% yield of a 3:2 mixture of two alcohols, 5 and 6.6 

Alcohol 5, mp 81-83°, shows in the infrared7 a band at 
3638 cm" S and its nmr spectrum consists of three-proton 
singlets at x 9.88, 9.03, 8.95, 8.83, 8.67, and 8.63, a one-
proton singlet at x 6.78, and an aromatic multiplet, 
x 2.94-3.04 (4 H). Oxidation of 5 with Cr03-pyridine 
gave ketone 7: mp 87-88.5°; v^01725cm_ 1; ^ x

% E t O H 

CrOj 

pyridine LiAlH4 

CrO3 

pyridine 

LiAIH4 
CrOj 
pyridine 

X)H 

10 

Sir: 

Several recent reports1 have described the photosensi­
tized rearrangement of benzobarrelenes to benzosemibull-
valenes. Zimmermanla has shown that the transforma­
tion 1 -* 2 is the result of vinyl-vinyl, not benzo-vinyl, 

bridging. However, di-jt-methane rearrangements2 which 
do involve benzo-vinyl bridging have been observed in the 
dibenzobarrelene to dibenzosemibullvalenelb,3and benzo-
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292 mu (e 1290) with shoulders at 313 (800), 301 (1230), 
and 247 mu (2980); nmr spectrum: three-proton singlets 
at x 9.50, 9.00, 8.80, 8.77, 8.58, and 8.50, and an aromatic 
multiplet, x 2.92-3.08 (4 H). Alcohol 6, mp 90-92°, has 
in the infrared7 a band at 3642 cm -1, and its nmr spec­
trum consists of three-proton singlets at x 9.33, 9.13, 8.90, 
8.85, 8.80, and 8.67, a one-proton singlet at x 7.08, and an 
aromatic multiplet, x 2.94-3.20 (4 H). Oxidation of 6 
with Cr03-pyridine yielded ketone 8: mp 100-102°; 
v££!0 1720 cm - 1; X9

m
sJ°EtOH 278 (s 1150) and 270 mu 

(1370) with a shoulder at 263 mu (1450); nmr spectrum 
(CD3CN): three-proton "singlets at x 9.44, 8.90, 8.74, 
8.68,8.63, and 8.57, and an aromatic multiplet, x 2.90-3.22 
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fore clearly establish the configurations of 5, 6, and 9, as shown. 
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